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Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. Aladdin has several gold coins and from time to time he asks the Genie to give him more.
On each such occasion the Genie first responds by adding a thousand gold coins and then
he takes back a half of the total weight of all Aladdin’s gold coins. If after asking the
Genie for more gold ten times, is it possible for Aladdin that the number of his gold coins
has increased taking into account that each time the Genie takes a half of all Aladdin’s
gold back and no coin is broken into smaller pieces? (4 points)

2. Do there exist 2018 positive reduced fractions, each with a different denominator, such
that the denominator of the difference of any two (after reducing to lowest terms) is less
than the denominator of any of the initial 2018 fractions? (5 points)

3. One hundred different numbers are written in the squares of a 10× 10 table, one number
in each square. For each move one can select a rectangle consisting of some squares, and
for each square of that rectangle swap its number with the number in the square opposite
to it with respect to the centre of the rectangle (i.e. make a rotation of the rectangle by
180◦). Is it always possible to arrange the numbers in the table taking no more than 99
moves so that the numbers increase from left to right in each row, and from bottom to
top in each column? (6 points)

4. An equilateral triangle lying in the plane α is orthogonally projected onto a plane β,
which is not parallel to α. The resulting triangle is again orthogonally projected onto a
plane γ, and its image is an equilateral triangle again. Prove that

(a) the angle between the planes α and β is equal to the angle between the planes β

and γ. (4 points)

(b) the plane β intersects the planes α and γ along the lines which are perpendicular to
each other. (4 points)
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5. You are travelling to some country and you don’t know its language. You know that
symbols “!” and “?” stand for addition and subtraction, but you don’t know which
symbol is for which operation. Each of these two symbols can be written between two
arguments, but for subtraction you don’t know if the left argument is subtracted from
the right or vice versa. For example, a?b could mean any of a− b, b− a and a+ b. You
don’t know how to write any numbers, but variables and brackets can be used as usual.
Given two arguments a and b how can you write for sure an expression that is equal to
20a− 18b? (10 points)

6. Let quadrilateral ABCD be inscribed into a circle S. Let P be the intersection point of
the rays BA and CD. Let U and V be the intersection points of the line going through
P and parallel to the tangent to S at point D, with the tangents to S at points A and
B respectively. Prove that the circumcircle of triangle CUV is tangent to the circle
S. (10 points)

7. The King decides to reward a group of n wizards. The wizards are placed in line one
after another (so that they can see in the same direction only), each of them wearing
either a black or white hat. Each wizard can see the hats of all the wizards in front of
him. Starting from the back of the line, each wizard in turn announces a colour (black
or white) and a natural number of his choice. The King then counts the number of
wizards who nominated the colour of his own hat, and then grants a pay bonus for the
same number of days to all the wizards. The wizards are allowed to decide on a common
strategy prior to forming the line, but they know that k of them are insane. However,
they do not know who of them is insane. An insane wizard tells a white or black colour
and a natural number regardless of the common strategy. What is the maximum number
of days with bonus pay that can be guaranteed for sure with the common strategy no
matter where the insane wizards are placed in the line? (12 points)
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1. Solution 1. No, it is not possible. Suppose Aladdin initially has 1000 + x gold
coins. Then, after asking the Genie for more gold coins, once, Aladdin will have
1000 + x/2 gold coins, and after asking the Genie for more coins, ten times, he
will have 1000 + x/210 gold coins. Since no coin is broken into smaller pieces, x
must be divisible by 1024. Since Aladdin initially had a positive number of coins,
x > −1000. Thus, for divisibility by 1024, x must in fact be non-negative, so that
1000+x/210 ≤ 1000+x, and hence, it is not possible that the number of Aladdin’s
gold coins could have increased.

Solution 2. No, it is not possible. Going backwards, if Aladdin has x gold coins
after asking the Genie once, then he had 2x − 1000 gold coins before asking the
Genie. Similarly, if Aladdin has x gold coins after asking the Genie ten times, then
he had

2(2(· · · (2x− 1000) · · ·)− 1000)− 1000 = 210x− 1000(29 + · · ·+ 2 + 1)

= 210x− 1000(210 − 1)

gold coins, initially.

Suppose that the number of Aladdin’s gold coins has increased. Then

210x− 1000(210 − 1) < x

(210 − 1)x < 1000(210 − 1)

x < 1000

However, 210x− 1000(210 − 1) > 0, and so we get

x >
1000(210 − 1)

210
= 1000

(
1− 1

1024

)
> 999

which leads to a contradiction since we have 999 < x < 1000 for an integer x.

2. Solution 1. Such 2018 positive reduced fractions do exist. Consider the fractions,

1 + q

q
,

2 + q

2q
, . . . ,

2018 + q

2018q
,

where q = 2018! + 1. These fractions cannot be reduced since (q, i) = 1 for
1 ≤ i ≤ 2018. The difference, of any two of the fractions above, can be written as

i+ q

iq
− j + q

jq
=
j(i+ q)− i(j + q)

ijq
=
j − i
ij

,

where 1 ≤ i, j ≤ 2018. Thus, the denominator of the difference of any two of the
fractions is less than q, and hence less than q after reducing to lowest terms. So
we are done.



Solution 2. Such 2018 positive reduced fractions do exist. Choose any 2018
positive reduced to lowest terms fractions with numerators a1, a2, . . . , a2018 and
respective denominators b1 > b2 > · · · > b2018 > 0. Choose a positive fraction of
the form 1/d where d > b1b2 and (d, b1b2 · · · b2018) = 1. Then add 1/d to each of
the 2018 chosen fractions, to obtain

ai
bi

+
1

di
=
aid+ bi
bid

,

for each i such that 1 ≤ i ≤ 2018. The 2018 fractions thus obtained satisfy all
requirements, since their reduced form denominators are dbi, as (aid+ bi, dbi) = 1,
and the difference of any two of them,

aid+ bi
bid

− ajd+ bj
bjd

=
(aid+ bi)bj − (ajd+ bj)bi

bibjd
=
aibj − ajbi

bibj
,

has denominator at most b1b2 < d < dbi.

Solution 3 (by William Steinberg). Such 2018 positive reduced fractions do
exist. Take 2019 primes p1 < p2 < · · · < p2018 < p2019. They are coprime; so, for
each i < 2019, there exists bi such that bipi ≡ 1 (mod p2019).

By the Chinese Remainder Theorem, for each i < 2019, there exists an ai satisfying
the system of 2019 congruences,

ai ≡ bi (mod p2019)

ai ≡ 1 (mod pj), for 1 ≤ j ≤ 2018.

We will show that the 2018 fractions,

aipi
p1p2 · · · p2018p2019

,

where 1 ≤ i ≤ 2018, satisfy the requirements. Since ai by design is coprime to
each of the primes p1, p2, . . . , p2018, the reduced denominator of the ith fraction is

p1p2 · · · p2018p2019
pi

.

Now, for 1 ≤ i, j ≤ 2018,

aipi ≡ 1 ≡ ajpj (mod p2019).

So p2019 divides aipi−ajpj. Hence the difference of the ith and jth fractions, i 6= j,
when reduced to lowest terms, is at most

p1p2 · · · p2018 =
p1p2 · · · p2018p2019

p2019
<
p1p2 · · · p2018p2019

pi
,

for 1 ≤ i ≤ 2018.



3. Solution. It is always possible. Colour all numbers red. We claim that for each
move we can select some rectangle consisting of squares with red numbers only,
make a rotation of that rectangle by 180◦ and re-colour one number green keeping
the following properties:

(i) every time a green number is created, it is less than any of the remaining red
numbers;

(ii) the created green numbers increase from left to right in each row, and from
bottom to top in each column, with the red numbers following in arbitrary
order.

Note that, at the beginning, the properties hold trivially, since there are no green
numbers. Assume that the properties hold before move n. We show that the
properties hold after move n. Indeed, let the least of the red numbers remaining
be x in the square A. Going down from A along squares with red numbers only, as
far as possible, we come to the square B (we are stopped either by a green square
or the edge of the table). Then, going left from B along squares with red numbers
only as far as possible we come to the square C. In this way, we obtain a rectangle
ABCD (it may consist of one square only) with red numbers only in all squares.
Make a rotation of ABCD by 180◦. Then x will be in the square C. All numbers
left of or below C have already been coloured green and are less than x. Now
re-colour x green. This completes move n, and properties (i) and (ii) again hold.

Since exactly one number is coloured green on each move, and once a number is
coloured green, it is not moved again, after 99 moves there will remain one red
number only. Since property (ii) is satisfied, the remaining red number can only
be at the top right corner of the table, and by property (i) it is already correctly
placed. Hence, we are done.

4. Solution. Let the planes α and γ intersect the plane β along the lines a and
b, forming with β, angles ϕ and ψ, respectively. For the plane α, rotate through
angle ϕ along the line a, so that α and β coincide. Similarly, for the plane γ, rotate
through angle ψ along the line b, so that γ and β coincide. Thus, the projection
U ′ onto the plane β, of a point U in the plane α at distance d from the line a, is at
distance d cosϕ from the line a. Similarly, the projection V ′ onto the plane β, of
a point V in the plane γ at distance d′ from the line b, is at distance d′ cosψ from
the line b. Note that the lines a and b are not parallel. Since an equilateral triangle
has been transformed into an equilateral triangle under the two transformations,
the composition of these two transformations is an homothety with a fixed point
at the intersection of the lines a and b. Call this fixed point O. Let points X and
Y lie on the lines a and b, respectively.

(a) Assume (b) already proved and 6 XOY = 90◦. Since the composition of these
two transformations is an homothety with coefficient k > 0, angles are pre-
served and 6 XOY is transformed into itself. So we get that a point with
coordinates (x, y) is transformed into a point with coordinates (x, y cosϕ)
first and then into a point with coordinates (x cosψ, y cosϕ) = (xk, yk) which
means ϕ = ψ as required.



(b) Assume the lines a and b are not perpendicular and 6 XOY < 90◦. Then, after
the first transformation, X remains fixed (unmoved) and Y is transformed
inside of 6 XOY . Furthermore, after the second transformation both points
are transformed inside 6 XOY . Hence, the angles are not preserved which is a
contradiction. Thus, the lines a and b are perpendicular to each other.

5. Solution. To facilitate the writing of a linear combination of a and b we first find
representations for 0, the sum of two symbols a and b, and the opposite symbol
−a.

An expression (a?a)!(a?a) is always equal to 0. So we can write 0 now bearing in
mind that we mean (a?a)!(a?a).

An expression (a?0)?(0?b) is equal to a+ b. Similarly to above, we can write a+ b,
bearing in mind that we mean (a?0)?(0?b).

Furthermore, 0?((0!(a!0))?0) is always equal to −a. Thus, we can represent an
expression that is equal to 20a− 18b using the operations we have defined above:

((· · · (a+ a) + · · ·+ a) + a)︸ ︷︷ ︸
adding 20 symbols a

+ (−((· · · (b+ b) + · · ·+ b) + b))︸ ︷︷ ︸
adding 18 symbols b

.

Note. The representations used for 0, a + b and −a are not unique. Other
representations can be obtained by replacing “?” with “!” and vice versa.

6. Solution. Let UC and V C intersect the tangent to S at point D, at K and L,
respectively. Furthermore, let UC and V C intersect S (for the second time) at
points X and Y , respectively. Let T be the intersection point of the two tangents
to S constructed at points A and B, respectively. Applying Menelaus’s theorem
to triangle UV T and line BP we get

UP

PV
· V B
BT
· TA
AU

= 1.

Being tangents to S from a common point, we have BT = TA. Since transversals
CU , CP and CV from common point C cut parallels KL and UV in the same
ratio, UP/PV = KD/DL. Hence,

KD · V B
DL · AU

= 1 or equivalently
UA

KD
=
V B

LD
.

By the Tangent-Secant version of the Power of a Point theorem, we have

UX · UC = UA2

KX ·KC = KD2

V Y · V C = V B2

LY · LC = LD2,

and hence
UX · UC
KX ·KC

=
UA2

KD2
=
V B2

LD2
=
V Y · V C
LY · LC

.



Since transversals from the common point C are cut in the same ratio by parallels
KL and UV , UC/KC = V C/LC and hence the above reduces to

UX

KX
=
V Y

LY
.

Therefore, by the converse of Thales Intercept theorem lines XY and UV are
parallel. Hence, there exists an homothety with centre at C transforming triangle
CXY into triangle CUV . Therefore, their circumcircles touch at point C and we
are done.

The two diagrams below show two different cases, where the circle S and the
circumcircle of CUV touch internally or touch externally.
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7. Solution. The maximum number of days is n − k − 1. Since k insane wizards
can tell their answers regardless of the common strategy, their answers cannot be
guaranteed. The correct answer of the first wizard who is not insane also cannot
be guaranteed since he does not have any information about the colour of his hat.
Therefore, there may be n−k−1 correct answers at most. We show that a strategy
to achieve n− k − 1 correct answers exists.

Note there are 2i ways that i wizards can wear either a black or a white hat.
So, wizards can arrange between them a coding for the colours of hats of all the
wizards in front of each wizard (that also accounts for several wizards being insane),
where a wizard, who can see i hats in front of him, announces a number from 1
to 2i matching a particular combination of black and white hats he can see. For
example, for a wizard who can see three wizards wearing hats in front of him, the
full set of possible combinations in alphabetical order and their matching numbers



are shown below.
BBB 1
BBW 2
BWB 3
BWW 4
WBB 5
WBW 6
WWB 7
WWW 8 = 23

Depending on the combination of hats each wizard sees in front of him, he an-
nounces, if he is not insane, of course, a number matching that combination, e.g.
if he sees white and then two black hats in front of him, i.e. WBB, he announces
5. If a wizard announces a number not in the range from 1 to 2i for some i, other
wizards replace such a number with 1. Thus, each wizard with the exception of the
last at the back of the line receives information about the colour of his hat from
all wizards behind him. However, each wizard has to figure out whose advice he
should heed, and whose advice he should ignore.

We begin by calling the wizard at the back, who starts the announcements, the
current Speaker. The strategy of each wizard, who is not insane, is to announce the
colour of his hat he received from the current Speaker. If the next wizard heeds
the advice of the wizard behind him, that wizard becomes the current Speaker.
Otherwise, the current Speaker is unchanged. Since all wizards can hear all the
information announced, each wizard can identify the current Speaker at any time.
Note that each wizard who is not insane will be the current Speaker at some
moment. Thus, on the way from one non-insane wizard to another non-insane
wizard, including the latter one, somebody will take the advice and announce the
correct colour of his hat. Hence, there will be at least n − k − 1 correct answers,
which completes the proof.


